
Proceedings of the

Deduktionstreffen 2019

Meeting of the Special Interest Group on
Deduction Systems (FG DedSys)

associated with KI 2019

Kassel, Germany, September 23th, 2019

Edited by Claudia Schon and Alexander Steen

Preface

The annual meeting Deduktionstreffen is the prime activity of the Special Inter-
est Group on Deduction Systems (FG DedSys) of the AI Section of the German
Society for Informatics (GI-FBKI). It is a meeting with a familiar, friendly at-
mosphere, where everyone interested in deduction can report on their work in
an informal setting.

A special focus of the Deduktionstreffen is on young researchers and students,
who are particularly encouraged to present their ongoing research projects to a
wider audience. Another goal of the meeting is to stimulate networking effects
and to foster collaborative research projects.

Deduktionstreffen 2019 is associated with the German KI 2019, which brings
together academic and industrial researchers from all areas of AI, providing
an ideal place for exchanging news and research results of intelligent system
technology. The Deduktionstreffen also hosted the annual general meeting of the
members of FG DedSys.

We want to thank Konstantin Korovin (U. Manchester) for accepting our
invitation to give a keynote talk about Solving non-linear constraints in the
CDCL style. Finally, the Deduktionstreffen 2019 organizers seize the opportunity
to thank the Program Committee members for their most valuable comments on
the submissions, the authors for inspiring papers, the audience for their interest
in this workshop, and the organizers of the KI 2019 workshop program for their
support.

September, 2019
Koblenz

Claudia Schon

i

Table of Contents

Computing Expected Runtimes for Constant Probability Programs 2
Jürgen Giesel, Peter Giesel and Marcel Hark

Automation of Higher-Order Modal Logic via Semantic Embedding 4
Tobias Gleißner

Automatic Modularization of Large Programs for Bounded Model
Checking . 6

Marko Kleine Büning

Automated Machine Learning Based Software Quality Assurance 7
Safa Omri

Systematic Analysis of Experiments in Solving Boolean Satisfiability
Problems . 11

Markus Iser

Automated Reasoning With Complex Ethical Theories - A Case Study
Towards Responsible AI . 13

David Fuenmayor and Christoph Benzmüller

A Parallel SAT Solver . 15
Jil Tietjen

Computer-supported Exploration of a Categorical Axiomatization of
Miroslav Benda’s Modeloids . 17

Lucca Tiemens

A Generic Scheduler for Large Theories presented in Batches (LTB) 19
Marco Träger

Computer-Assisted Reasoning about Norms and Obligations 21
Gavin Goerke

Experiments in Deontic Logics using Isabelle/HOL . 23
Ali Farjami

ii

Program Committee

Serge Autexier
Bernhard Beckert
Christoph Benzmüller
Jasmin Blanchette
Jürgen Giesl
Manfred Kerber
Jens Otten
Florian Rabe
Claudia Schon (co-chair)
Stephan Schulz
Viorica Sofronie-Stokkermans
Alexander Steen (co-chair)
Uwe Waldmann

iii

,

1

Computing Expected Runtimes for Constant
Probability Programs?

Jürgen Giesl1, Peter Giesl2, and Marcel Hark1

1 LuFG Informatik 2, RWTH Aachen University, Germany
{giesl,marcel.hark}@cs.rwth-aachen.de

2 Department of Mathematics, University of Sussex, UK
p.a.giesl@sussex.ac.uk

In recent years, probabilistic programs have gained a lot of interest. They are
used to describe randomized algorithms and probability distributions, with appli-
cations in computer vision, statistical modelling, and machine learning. However,
when it comes to termination analysis, probabilistic programs are conceptually
harder than their deterministic counterpart. Nevertheless, for deterministic pro-
grams, special classes have been determined where termination is decidable (cf.,
e.g., [4]). In this work, we focus on constant probability programs, a special class
of probabilistic programs. By using results from random walk theory, we show
that for these programs there is a very simple procedure to decide the termina-
tion behavior. Moreover, we also show that the expected runtimes of constant
probability programs can be computed exactly and present an implementation
in our tool KoAT [1].

As an example, consider the well-known program which models the race
between a tortoise and a hare (see, e.g., [2]). As long as the tortoise (vari-
able t) is not behind the hare (variable h), it does one step in each itera-
tion. With probability 1

2 , the hare stays at its position and with probabil-
ity 1

2 it does a random number of steps uniformly chosen between 0 and 10.

while (h t) {
t = t + 1;
{h = h + Unif (0, 10)} � 1

2
{h = h};

}

The race ends when the hare is in front
of the tortoise. Here, the hare wins with
probability one and recent techniques in-
fer the upper bound 2

3 ·max(t�h+9, 0) on
the expected number of loop iterations.
Thus, the program is positively almost surely terminating.

The idea of our decision procedure is the following: we first transform pro-
grams into a form with only one program variable, e.g., by only considering the
distance t�h+1 of the tortoise and the hare. Then our procedure finds out that
it is expected to decrease by 3

2 in each loop iteration. We say the drift of the
program is � 3

2 . This can be deduced directly from the syntax of the program
by considering the changes of the distance with the according probabilities. As
already mentioned, results from random walk theory yield that the sign of the
drift decides the termination behavior for such programs: a negative drift implies
positive almost sure termination, a drift of zero implies almost sure termination
with infinite expected runtime and a positive drift implies that the probability of

? Supported by the DFG Research Training Group 2236 UnRAVeL and the London
Mathematical Society (Grant 41662, Research in Pairs).

2

nontermination is strictly greater than zero. Furthermore, the drift can be used
to compute upper and lower bounds on the expected runtime directly. In the
case of the tortoise and the hare, the expected runtime is between 2

3 · (t� h + 1)
and 2

3 · (t � h + 1) + 16
3 , i.e., it is asymptotically linear.

However, our procedure can even compute the expected runtime of such
programs exactly. To this end, we describe the expected runtime of a constant
probability program as the least nonnegative solution of a linear recurrence equa-
tion. Linear recurrence equations are well studied in mathematics. The complex
vector space of all solutions of such an equation can be computed by using
the roots of the characteristic polynomial, and the degree of this polynomial is
the dimension of the solution space. Modern computer algebra systems such as
SymPy can easily compute a basis of this space. Nevertheless, determining the
least nonnegative solution has not been considered so far and is more involved.
But we have seen that the asymptotic expected runtime of a constant probability
program is linear. Furthermore, in the case of the tortoise and the hare, if the
distance between tortoise and hare is smaller or equal to zero, the race has fin-
ished, i.e., if this distance is smaller or equal to zero, then the expected runtime
is zero. By combining these observations with the standard procedure for solving
linear recurrence equations we can deduce the exact expected runtime in terms
of algebraic numbers, i.e., it is possible to compute the exact expected runtime
up to any chosen precision. For instance, for the race of tortoise and hare our
algorithm computes

runtime(t, h) = 0.049 · 0.65
(t�h+1) · sin (2.8 · (t � h + 1)) � 0.35 · 0.65

(t�h+1) · cos (2.8 · (t � h + 1))

+0.15 · 0.66
(t�h+1) · sin (2.2 · (t � h + 1)) � 0.35 · 0.66

(t�h+1) · cos (2.2 · (t � h + 1))

+0.3 · 0.7
(t�h+1) · sin (1.5 · (t � h + 1)) � 0.39 · 0.7

(t�h+1) · cos (1.5 (t � h + 1))

+0.62 · 0.75
(t�h+1) · sin (0.83 · (t � h + 1)) � 0.49 · 0.75

(t�h+1) · cos (0.83 · (t � h + 1))
+ 2

3 · (t � h) + 2.3

within 0.49 s. Here, the “sin” and “cos” appear when choosing a representation
which does not involve any complex numbers. So, for example, if the tortoise
starts 10 steps ahead of the hare we can expect the race to finish after 9 iterations.

The full version of this paper appears in [3].

References

1. Brockschmidt, M., Emmes, F., Falke, S., Fuhs, C., Giesl, J.: Analyzing runtime
and size complexity of integer programs. ACM Trans. Program. Lang. Syst. 38(4),
13:1–13:50 (2016), https://doi.org/10.1145/2866575

2. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martin-
gales. In: Proc. CAV ’13. pp. 511–526. LNCS 8044 (2013), https://doi.org/10.
1007/978-3-642-39799-8_34

3. Giesl, J., Giesl, P., Hark, M.: Computing expected runtimes for constant probability
programs. In: Proc. CADE ’19. LNCS 11716 (2019), extended version with further
details and proofs is available at https://arxiv.org/abs/1905.09544

4. Tiwari, A.: Termination of linear programs. In: Proc. CAV ’04. pp. 70–82. LNCS
3114 (2004), https://doi.org/10.1007/978-3-540-27813-9_6

3

Automation of Higher-Order Modal Logic via Semantic Embedding

Tobias Gleißner

Freie Universität Berlin, Institute of Computer Science
tobias.gleissner@fu-berlin.de

Introduction. Computer-assisted reasoning in non-classical logics is of increasing interest as its potential
applications grow in numbers: Epistemic, doxastic and alethic logics in philosohpical disputes, input-output
logics in legal reasoning, di↵erent temporal logics in verification processes and paraconsistent, public an-
nouncement, dynamic, deontic, multi-agent and description logics in AI contexts. All these examples employ
non-classical logics that are tailored to a specific (part of a) domain. Unfortunately, with a few exceptions,
most reasoning systems can process only classical logics or a (often propositional) fragment of one specific
non-classical logic. As designing and implementing reasoning software is very costly, creating provers for spe-
cial purpose logics usually is not a feasible course of action. The semantic embedding approach remedies this
situation: By encoding the semantics of the logic of interest (source logic) in some other logic (target logic)
and augmenting a hypothesis and its axioms accordingly, o↵-the-shelf reasoners for the target logic become
applicable for solving a problem of the source logic. In this abstract higher-order modal logic [16, 10, 11] will
be the source logic to exemplify the automation of a non-classical logic via the semantic embedding approach
based on the work of Lewis [14] Benzmüller and Paulson [4, 6]. The target logic selected here is classical
higher-order logic, which is automated by several mature reasoning systems such as Leo III [1], Satallax [8]
and Nitpick [7]. Semantic embeddings for numerous other non-classical logics including conditional logics [2],
hybrid logic [18], intuitionistic logics [3], free logics [5] and many-valued logics [17] have been proposed and
partially implemented [15].

Automation of Higher-Order Modal Logic. The strongly simplified description of the semantics of
modal logics for this showcase is as follows: There exists a set of possible worlds on which any proposition is
evaluated individually. A so-called accessibility relation is defined that (partly) connects these world. A new
operator ⇤ which can be applied to propositions extends the signature of classical logics and is evaluated to
true if and only if the proposition evaluates to true in all reachable worlds with respect to the accessiblity
relation. A proposition is a tautology if and only if it is true on every world.
For the semantic embedding the set of worlds is encoded as a new type µ and a relation rµ!µ!� mimicking the
acessibility relation is introduced. All operators are replaced by a world-dependant variant e.g. disjunction
_o!o!o in modal logic becomes �Aµ!�, Bµ!�, Wµ. A W _ B W in the target logic. The operator ⇤o!o

is exchanged by �Aµ!�, Wµ. 8V. r W V � A V according to its semantics that demand the proposition A
to hold on all reachable worlds V from world W . Finally a proposition A can be expected to be true on
every world in order to become valid by quantifying over the set of worlds and applying the worlds to the
proposition similar to 8Wµ. A W .

Evaluation. This approach has been implemented in the Modal Embedding Tool (MET) [10, 13, 12, 11]
and shown to have competitive performance when paired with state-of-the-art higher-order reasoning systems
and compared against the most advanced native reasoning system [10, 11]. Furthermore non-classical logics
often yield a vast amount of semantic variations as it is the case with higher-order modal logic: The ⇤-
operator can impose certain properties like transitivity on the accessibility relation, constants may denote
di↵erent objects on di↵erent worlds, domains might not be assumed identical when compared world-wise,
multiple accessibility relations could be defined resulting in more than one ⇤-operator and there is more
than one form of logical consquence [9, 10, 11]. These semantic variants can be easily handled and combined
in a semantic embedding implementation since the modifications sum up to providing alternative definitions
and adding some axioms.

Summary. The semantic embedding approach is a successful way to automate logics that do lack sophis-
ticated reasoning software. It is cheap to build, competetive against native reasoning systems and can be
quickly adapted for a huge range of semantic alternatives.

4

Automation of Higher-Order Modal Logic via Semantic Embedding Gleißner

References

[1] Benzmüller, C., Paulson, L.C., Sultana, N., Theiß, F.: The higher-order prover LEO-II. Journal of Automated
Reasoning 55(4), 389–404 (2015)

[2] Benzmüller, C.: Cut-Elimination for Quantified Conditional Logic. J. of Philosophical Logic (2016)

[3] Benzmüller, C., Paulson, L.: Multimodal and intuitionistic logics in simple type theory. The Logic Journal of
the IGPL 18(6), 881–892 (2010)

[4] Benzmüller, C., Paulson, L.: Quantified Multimodal Logics in Simple Type Theory. Logica Universalis (Special
Issue on Multimodal Logics) 7(1), 7–20 (2013)

[5] Benzmüller, C., Scott, D.: Automating free logic in Isabelle/HOL. In: Greuel, G.M., Koch, T., Paule, P.,
Sommese, A. (eds.) Mathematical Software – ICMS 2016, 5th International Congress, Proceedings. LNCS, vol.
9725, pp. 43–50. Springer, Berlin, Germany (2016)

[6] Benzmüller, C., Woltzenlogel Paleo, B.: Higher-order modal logics: Automation and applications. In: Paschke,
A., Faber, W. (eds.) Reasoning Web 2015. pp. 32–74. No. 9203 in LNCS, Springer, Berlin, Germany (2015),
(Invited paper)

[7] Blanchette, J., Nipkow, T.: Nitpick: A counterexample generator for higher-order logic based on a relational
model finder. In: Proc. of ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer (2010)

[8] Brown, C.: Satallax: An automated higher-order prover. In: Gramlich, B., Miller, D., Sattler, U. (eds.) Proc. of
IJCAR 2012. LNAI, vol. 7364, pp. 111 – 117. Springer (2012)

[9] Fitting, M., Mendelsohn, R.: First-Order Modal Logic. Synthese Library Studies in Epistemology Logic, Method-
ology, and Philosophy of Science Volume 277, Springer (1998)

[10] Gleißner, T.: Converting Higher-Order Modal Logic Problems into Classical Higher-Order Logic. Bsc. thesis,
Freie Universität Berlin, Institute of Computer Science, Berlin, Germany (2016)

[11] Gleißner, T.: A Framework for Higher-Order Modal Logic Theorem Proving. Msc. thesis, Freie Universität
Berlin, Institute of Computer Science, Berlin, Germany (2019)

[12] Gleißner, T., Steen, A.: The met: The art of flexible reasoning with modalities. In: Benzmüller, C., Ricca,
F., Parent, X., Roman, D. (eds.) Rules and Reasoning. pp. 274–284. Springer International Publishing, Cham
(2018)

[13] Gleißner, T., Steen, A., Benzmüller, C.: Theorem provers for every normal modal logic. In: Eiter, T., Sands, D.
(eds.) LPAR-21. 21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning.
EPiC Series in Computing, vol. 46, pp. 14–30. EasyChair, Maun, Botswana (2017), https://easychair.org/
publications/paper/340346

[14] Lewis, D.K.: Counterpart theory and quantified modal logic. The Journal of Philosophy 65(5), 113–126 (1968),
http://www.jstor.org/stable/2024555

[15] Makarenko, I.: Automatisierung von freier Logik in Logik höherer Stufe. Bsc. thesis, Freie Universität Berlin,
Institute of Computer Science, Berlin, Germany (2016)

[16] Muskens, R.: Higher order modal logic. Handbook of modal logic 3 (2007)

[17] Steen, A., Benzmüller, C.: Sweet SIXTEEN: Automation via embedding into classical higher-order logic. Logic
and Logical Philosophy 25, 535–554 (2016)

[18] Wisniewski, M., Steen, A.: Embedding of Quantified Higher-Order Nominal Modal Logic into Classical Higher-
Order Logic. In: Benzmüller, C., Otten, J. (eds.) Automated Reasoning in Quantified Non-Classical Logics
(ARQNL), Proceedings. EPiC, vol. 33, pp. 59–64. EasyChair (2014)

2

5

Automatic Modularization of Large Programs for

Bounded Model Checking

Marko Kleine Büning

Karlsruhe Institute of Technology (KIT), Germany
marko.kleinebuening@kit.edu

1 Extended Abstract

The veri�cation of real-world applications is a continuous challenge which yielded numerous
di�erent methods and approaches. However, scalability of precise analysis methods on large
programs is still limited. One of the reasons is the growth in size of embedded systems.
Modern cars are currently at around 100 MLoC and are estimated to go up to a total of 300
MLoC in the next years.

Problem statement. For bounded model checking (BMC), a program under veri�cation
has to be encoded into a logical formula. Even when ignoring time constraints, the memory
requirements to encode millions of lines of code is not attainable by state-of-the-art BMC
systems. A well-known approach to increase scalability of software veri�cation is to partition
the program into smaller modules that can then be solved individually [2,5]. Such modu-
larization typically requires formalization of interfaces and dependencies between modules.
Current work generally does not cover the aspect of how to generate modules. There exist
frameworks that automate part of the modularization task, e.g. by precondition learning or
deduction of modules from program design [3,4]. However, these approaches do not provide
a framework for fully automatic veri�cation of large systems. Tools using separation logic
for modularization are among others ETH's Viper [7] and Facebook's INFER [1], which are
loosely related to our approach but concentrate either on manual speci�cation or limited
memory properties.

Proposed solution. The presented work is an extract of the content published in [6]. To
automatically verify large projects, an automatic modularization is needed. Therefore, we
�rst created formal de�nitions of program semantics and modularization. Based on these
de�nitions, we developed four modularization approaches which are based on abstractions.
Abstractions are an important technique to simplify veri�cation tasks. Most often abstrac-
tions are over-approximations of variable values. The abstractions that we are interested
in are di�erent and of a �structural� kind. We abstract function calls and replace them by
over-approximations of the function behavior, or we ignore the calling context of a function
in a larger program.

We illustrate the modularization approaches in Fig. 1. Every node represents a function
while the edges represent function calls. The triangles represent property checks that are
inserted into a function. The green boxes designate the module and the green arrow marks
the entry point for the analysis.

6

a b

Fig. 1: Illustration of the modularization approaches:
(a) Function behavior abstraction; (b) calling context abstraction.

The �rst two approaches over-approximate the function behavior of called functions as
e. g. shown in Fig. 1(a). The analysis starts at the main function to generate a precise calling
context for the function to be analyzed. For the abstraction of the called functions, we have
two possibilities:

1. Havoc function call. Without any further knowledge about the function behavior, we
have to assume arbitrary values for the return value and all memory content.

2. Postcondition generation. We implement a prepossessing step that generates post-
conditions for the function behavior of havoced functions. In a �rst step that includes
only a set of changed memory locations and is then extended to value calculations.

The third and the fourth approach abstract the calling context of a function as e. g. shown
in Fig. 1(b). We abstract all prior function calls but therefore include all functions called, i.e.
no havocing. There are again two possibilities to abstract the calling context of a function:

1. "Library" abstraction. Without any further knowledge, we set the memory and all
input parameters to arbitrary values at the start of the function. This abstraction is
particular useful when analyzing libraries or functions accessible throughout the system.

2. Precondition generation. We can generate preconditions for our function. To cal-
culate exhaustive preconditions for large programs is currently not feasible. Thus, we
generate them bottom up based on erroneous checks.

For evaluation, we compared a whole-program analysis approach to the library abstrac-
tion and showed that for industry sized projects with ca. 160KLoC, the modularization
approach heavily outperforms the global analysis. To further improve automatic veri�cation
of large programs, current and future work includes the detailed development and imple-
mentation of the remaining modularization approaches. The automatic creation of pre- and
postconditions will likely reduce the amount of potential false positives. Additionally, an
customized alias analysis is developed to argue and re�ne data dependencies of programs.
Automatic veri�cation of industry sized applications is still a huge challenge that will accom-
pany any sound veri�cation approach. We see the automatic modularization as a promising
concept to handle such programs. To fully utilize the advantages of modularization, systems
can be adjusted such that every module analysis can be run in a parallel setting.

References

1. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M., O'Hearn, P.,
Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast with software veri�cation. In:
Havelund, K., Holzmann, G., Joshi, R. (eds.) NASA Formal Methods. pp. 3�11. Springer Inter-
national Publishing, Cham (2015)

2. Clarke, E.M., Long, D.E., McMillan, K.L.: Compositional model checking. In: [1989] Proceedings.
Fourth Annual Symposium on Logic in Computer Science. pp. 353�362. IEEE (1989)

7

3. Cobleigh, J.M., Giannakopoulou, D., P s reanu, C.S.: Learning assumptions for compositional
veri�cation. In: International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. pp. 331�346. Springer (2003)

4. Giannakopoulou, D., Pasareanu, C.S., Cobleigh, J.M.: Assume-guarantee veri�cation of source
code with design-level assumptions. In: Proceedings. 26th International Conference on Software
Engineering. pp. 211�220. IEEE (2004)

5. Grumberg, O., Long, D.E.: Model checking and modular veri�cation. In: International Conference
on Concurrency Theory. pp. 250�265. Springer (1991)

6. Kleine Büning, M., Sinz, C.: Automatic modularization of large programs for bounded model
checking. In: Formal Methods and Software Engineering - 21th International Conference on
Formal Engineering Methods, ICFEM 2019, November 5th-9th, Proceedings (2019), accepted
and to be published

7. Müller, P.: Modular speci�cation and veri�cation of object-oriented programs. Springer-Verlag
(2002)

8

Automated Machine Learning Based Software Quality
Assurance

Safa Omri

Karlsruhe Institute of Technology (KIT), Germany
safa.omri@kit.edu

1 Introduction

Software quality assurance is overall the most expensive activity in safety-critical embedded soft-
ware development. Increasing the effectiveness and efficiency of software quality assurance is more
and more important given the size, complexity, time and cost pressures in automotive development
projects. Therefore, in order to increase the effectiveness and efficiency of software quality assur-
ance tasks, we need to identify problematic code areas most likely to contain program faults and
focus the quality assurance tasks on such code areas. Obtaining early estimates of fault-proneness
helps making decisions on testing, code inspections and design rework, to financially plan possible
delayed releases, and affordably guide corrective actions to the quality of the software.

One source to identify fault-prone code components can be their failure history, which can
be obtained from bug databases; a software component likely to fail in the past is likely to do
so in the future. However, in order to get accurate predictions, a long failure history is required.
Such a long failure history is usually not available, moreover maintaining long failure histories is
usually avoided altogether. A second source to estimate fault-proneness of software components
is the program code itself. Static code analysis and code complexity metrics have been shown to
correlate with fault density in a number of case studies. Furthermore, faults are usually strongly
related to changes made in the software systems and learning the changes which occur throughout
software evolution by code churn is additionally essential. Different recent works have used past
changes as indicators for faults.

Our major question is whether or not we can use code complexity metrics combined with static
analysis fault density and with code churn metrics to predict pre-release fault density, that is: Is
combining static analysis tools with code complexity metrics and with code churn metrics a leading
indicator of faulty code?

We present an exploratory study investigating whether the faults detected by static analysis
tools combined with code complexity metrics and with code churn metrics can be used as software
quality indicators and to build pre-release fault prediction models. The combination of code com-
plexity metrics with static analysis fault density and with code churn metrics was used to predict
the pre-release fault density with an accuracy of 78.3%. This combination can also be used to
separate high and low quality components with a classification accuracy of 79%.

In order to enhance the prediction accuracy of our old prediction approach, we believe that the
syntax and different levels of semantics of the studied source code have to be also considered as an
independent variables of the prediction process.

2 Study Design

Our experiments were carried out using eight software projects of an automotive head unit control
system (Audio, Navigation, Phone, etc.). Each project, in turn, is composed of a set of components.
The total number of components is 54. These components have a collective size of 23.797 MLOC
(million LOCs without comments and spaces). All components use the object oriented language
C++. For each of the components, we compute a number of metrics, as described in Table 1.

3 Case Study

Our process can be summarized in the following three steps:

9

2 Safa Omri

Table 1. Metrics used for the study

Metrics Description

Static Analysis Fault Density
faults found by static analysis tools
per KLOC (thousand lines of code).

Code Churn Metrics

Relevant LOC
relevant LOCs without comments,
blanks, expansions, etc.

Added LOC # lines of code added

Removed LOC # lines of code deleted

Modified Files # files modified

Developpers # developers

Code Complexity Metrics

Complexity cyclomatic complexity of a method

Nesting # nesting levels in a method

Statements # statements in a method

Paths # non-cyclic paths in a method

Parameters # function parameters in a method

3.1 Data Preperation

The data required to build our fault predictors are the metrics described in in Table 1, and the Pre-
release faults where we mine the archives of several major software systems at Daimler and map
their pre-release faults (faults detected during development) back to its individual components.
We define the pre-release fault density of a software component as the number of faults per KLOC
found by other methods (e.g. testing) before the release of the component.

3.2 Model Training

We train statistical models to learn the pre-release fault densities based on a) static analysis faults
densities, b) code complexity metrics, and c) code churn metrics.

3.3 Model Prediction

The trained statistical models are used to

a) predict pre-release fault densities of software components (Regression): we applied statistical
regression techniques where the dependent variable is the pre-release fault density, and the
independent variables are the code complexity metrics combined with the static analysis fault
density. The models we tested include linear, exponential, polynomial regression models as well
as support vector regressions and random forest.

b) discriminate fault-prone software components from the not fault-prone software components
(Classification): we applied several statistical classification techniques. The classification tech-
niques include random forest classifiers, logistic regression, passive aggressive classifiers, gradi-
ent boosting classifiers, K-neighbors classifiers and support vector classifiers.

4 Conclusion and Future Work

In this work, we verified the following hypotheses: (1) static analysis fault density combined with
code complexity metrics are good predictor of pre-release fault density and a good discriminator be-
tween fault-prone and not fault-prone components; and (2) the history of code changes (code churn
metrics) between different commits and releases when combined with (1) improves the prediction
accuracy of the pre-release faults.

We plan to further validate our study by evaluating the semantic and syntax of the source code
using the abstract syntax tree (AST) and control- and dataflow as source code representation. We
also plan to train deep learning models to predict software faults not only on Component level but
also on the method level.

10

Systematic Analysis of Experiments in Solving
Boolean Satisfiability Problems

Markus Iser

Karlsruhe Institute of Technology (KIT)
markus.iser@kit.edu

Introduction. Aside from its theoretical weight, the SAT problem is of inter-
est in numerous practical domains like software and hardware verification [7,
6], AI planning [12] and scheduling [1] or electronic design automation [10].

Successful recent SAT solvers (i.e. Conflict-Driven Clause-Learning (CDCL)
solvers) exploit problem structure [2]. Structure features of SAT problems come
in many forms and can be based on literal occurrences [13], problem parti-
tions [5], graph representations [3] or combinatorial circuit encodings [8].

As some strategies and configurations work well on specific domains of prob-
lems but not so on others, portfolio approaches like SATzilla [14] or ISAC [3]
use machine learning to estimate the best algorithm and configuration for a
problem. Such approaches might work well in practice but come with a lack of
scientific insight.

Systematic approaches that analyze why and when heuristics work and how
much of an impact these heuristics have are rare [4]. In [9], Katebi et al. present
an attempt to analyze the impact of several state-of-the-art strategies including
an evaluation that distinguishes problems by family.

We present a systematic approach in order to answer to the following ques-
tions. Are there “lost” approaches in SAT solving (consider [11]) which are
only successful on a specific problem domain but inferior in the overall pic-
ture? Why do some heuristics work best on certain domains? Why are certain
configurations and combinations of heuristics more successful than others?

Approach. We are working on two software projects which allow us to sys-
tematically analyze competing strategies in SAT solving. This includes the
development of the modular SAT solver Candy1 as well as the benchmark fea-
ture database Global Benchmark Database (GBD)2 which allows us to analyze
the results of runtime experiments in combination with benchmark features.

Candy. Candy is a modular SAT solver consisting of a set of exchangeable
solver systems, e.g. the propagation system, the restart system, the clause-
learning or the branching system. Candy includes systems that implement the
common CDCL algorithms and data-structures, but provides also e.g. alter-
native branching strategies [8]. All systems share common references to the
objects managing the clause database and the current assignment, thus en-
abling cross-system communication. Lightweight system interfaces simplify the
implementation of new strategies.

1 https://github.com/Udopia/candy-kingdom
2 https://github.com/Udopia/gbd

11

GBD. Our benchmark database tool allows to manage and distribute bench-
mark meta-data and comes with a command-line interface as well as a web-
frontend. GBD allows to query for benchmark features and to download bench-
mark problems based on the selection of specific features. The command-
line tool allows to store benchmark features as well as solver runtimes in the
database.

Conclusion. Both systems in combination allow for a systematic analysis of
old and new strategies which are used in SAT solvers. As runtime and feature
data becomes archived, it can be revisited anytime. The development of new
solver strategies for Candy or new machine learning approaches for GBD can
now also be integrated into small scope student projects.

References

1. Alves, R., Alvelos, F., Sousa, S.D.: Resource constrained project scheduling with
general precedence relations optimized with SAT. In: Progress in Artificial Intel-
ligence, pp. 199–210. Springer (2013)

2. Ansótegui, C., Bonet, M.L., Giráldez-Cru, J., Levy, J.: Community structure in
industrial SAT instances. CoRR (2016)

3. Ansótegui, C., Bonet, M.L., Giráldez-Cru, J., Levy, J.: Structure features for SAT
instances classification. Journal of Applied Logic 23, 27–39 (Sep 2017)

4. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern sat solvers.
In: Proceedings of the 21st International Jont Conference on Artifical Intelligence.
pp. 399–404. IJCAI’09 (2009)

5. Biere, A., Sinz, C.: Decomposing SAT problems into connected components. JSAT
2(1-4), 201–208 (2006)

6. Biere, H., Järvisalo, M.: Equivalence checking of HWMCC 2012 circuits. In: Pro-
ceedings of SAT Competition 2013. p. 104 (2013)

7. Falke, S., Merz, F., Sinz, C.: LLBMC: Improved bounded model checking of C
programs using LLVM - (competition contribution). In: TACAS. pp. 623–626
(2013)

8. Iser, M., Kutzner, F., Sinz, C.: Using gate recognition and random simulation for
under-approximation and optimized branching in SAT solvers. In: ICTAI (2017)

9. Katebi, H., Sakallah, K.A., Marques-Silva, J.P.: Empirical study of the anatomy
of modern sat solvers pp. 343–356 (2011)

10. Mihal, A., Teig, S.: A constraint satisfaction approach for programmable logic
detailed placement. In: SAT. pp. 208–223 (2013)

11. Nadel, A., Ryvchin, V.: Chronological backtracking. In: Theory and Applications
of Satisfiability Testing - SAT 2018 - 21st International Conference, SAT 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July
9-12, 2018, Proceedings. pp. 111–121 (2018)

12. Rintanen, J.: Engineering efficient planners with SAT. In: ECAI. pp. 684–689
(2012)

13. Silva, J.P.M.: The impact of branching heuristics in propositional satisfiability
algorithms. In: Proc. Portuguese Conference on Artificial Intelligence EPIA. pp.
62–74 (1999)

14. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-based Al-
gorithm Selection for SAT. Journal of Artificial Intelligence Research 32, 565–606
(Jul 2008)

12

Automated Reasoning with Complex Ethical Theories
— A Case Study Towards Responsible AI —

David Fuenmayor1 and Christoph Benzmüller1,2

1 Dep. of Mathematics and Computer Science, Freie Universität Berlin, Germany
2 Faculty of Science, Technology and Communication, University of Luxembourg, Luxembourg

The design of explicit ethical agents [8] is faced with tough philosophical and practical challenges.
We address in this work one of its biggest ones: How to explicitly represent ethical knowledge
and use it to carry out complex reasoning with incomplete and inconsistent information in a
scrutable and auditable fashion, i.e. interpretable for both humans and machines. We present a case
study illustrating the utilization of higher-order automated reasoning for the representation and
evaluation of a complex ethical argument, using a Dyadic Deontic Logic (DDL) [3] enhanced with
a 2D-Semantics [6]. This logic (DDL) is immune to known paradoxes in deontic logic, in particular
“contrary-to-duty” scenarios. Moreover, conditional obligations in DDL are of a defeasible and
paraconsistent nature and so lend themselves to reasoning with incomplete and inconsistent data.

Our case study consists of a rational argument originally presented by the philosopher Alan
Gewirth [5], which aims at justifying an upper moral principle: the “Principle of Generic Con-
sistency” (PGC). It states that any agent (by virtue of its self-understanding as an agent) is
rationally committed to asserting that (i) it has rights to freedom and well-being, and that (ii) all
other agents have those same rights. The argument used to derive the PGC is by no means trivial
and has stirred much controversy in legal and moral philosophy during the last decades and has
also been discussed as an argument for the a priori necessity of human rights. Most interestingly,
the PGC has lately been proposed as a means to bound the impact of artificial general intelligence
(AGI) by András Kornai [7]. Kornai’s proposal draws on the PGC as the upper ethical principle
which, assuming it can be reliably represented in a machine, will guarantee that an AGI respects
basic human rights (in particular to freedom and well-being), on the assumption that it is able to
recognize itself, as well as humans, as agents capable of acting voluntarily on self-chosen purposes.

In the annexed Fig. 1 we show an extract of our work on the formal reconstruction of Gewirth’s
argument for the PGC using the proof assistant Isabelle/HOL (a formally-verified, unabridged ver-
sion is available in the Archive of Formal Proofs [4]). Independent of Kornai’s claim, our work
exemplarily demonstrates that reasoning with ambitious ethical theories can meanwhile be success-
fully automated. In particular, we illustrate how it is possible to exploit the high expressiveness of
classical higher-order logic as a metalanguage in order to embed the syntax and semantics of some
object logics (e.g. DDL enhanced with quantification and contextual information) thus turning a
higher-order prover into an universal reasoning engine [1] and allowing for seamlessly combining
and reasoning about and within different logics (modal, deontic, epistemic, etc.).

References

1. C. Benzmüller. Universal (meta-)logical reasoning: Recent successes. Science of Computer Program-
ming, 172:48–62, March 2019.

2. C. Benzmüller, X. Parent, and L. van der Torre. A deontic logic reasoning infrastructure. In F. Manea,
R. G. Miller, and D. Nowotka, editors, 14th Conference on Computability in Europe, CiE 2018, Pro-
ceedings, volume 10936 of LNCS, pages 60–69. Springer, 2018.

3. J. Carmo and A. J. Jones. Deontic logic and contrary-to-duties. In Handbook of Philosophical Logic,
pages 265–343. Springer, 2002.

4. D. Fuenmayor and C. Benzmüller. Formalisation and evaluation of Alan Gewirth’s proof for the
principle of generic consistency in Isabelle/HOL. Archive of Formal Proofs, 2018.

5. A. Gewirth. Reason and morality. University of Chicago Press, 1981.
6. D. Kaplan. On the logic of demonstratives. Journal of Philosophical Logic, 8(1):81–98, 1979.
7. A. Kornai. Bounding the impact of AGI. Journal of Experimental & Theoretical Artificial Intelligence,

26(3):417–438, 2014.
8. J. Moor. Four kinds of ethical robots. Philosophy Now, 72:12–14, 2009.

13

Appendix

Fig. 1. Representation of a variant of Gewirth’s proof in Isabelle/HOL

14

A Parallel SAT Solver

In SAT solvers conflict clauses are generated through the
Conflict Driven Clause Learning technique. When a clause
could not be satisfied because of a conflict in the assignment,
a new clause, explicitly excluding the conflicting assignment,
is added to the initial SAT instance [2].
In parallel SAT solvers, the conflict clauses are exchanged
between the different instances. If all conflict clauses were
exchanged between the instances, there would occur too much
overhead. So, there are different possibilities to choose specific
conflict clauses to exchange.

In this paper a new way of rating conflict clauses is
established. At first, a Naive Bayes Classifier is trained by
using different features. The trained Naive Bayes classifier
estimates the clause quality and the ”good” conflict clauses
will be shared between the instances of the SAT solver. To the
best of our knowledge, algorithms from the machine learning
domain have not yet been used in this context.
The parallel SAT solver is based on an existing SAT solver
and exchanges only specific clauses, called ”good” clauses. To
find out the ”good” conflict clauses, the Naive Bayes classifier
estimates every conflict clauses quality during run time. In
general, Classification is a method for determining the class a
object belongs to based on several independent variables. The
idea of using machine learning is based on the hope that a
classifier can better evaluate conflict clauses than algorithms
written by hand.

Before the Naive Bayes Classifier can be used, it has to be
trained. A classifier utilizes some training data to learn how
given input data relate to a class. Both for training and for
actually classifying the data, features are used. While training,
the conflict clause must first be assigned to classes. For each
clause, the values for each feature are collected. To determine,
whether the clause is a ”good” conflict clause or not, a
heuristic is needed. Otherwise the classifier does not know,
how to relative given input data to a class. In our approach, all
conflict clauses are sorted by their activity, which is a value for
each clause to record how often it was involved in a conflict.
So, conflict clauses with a higher activity have lead to more
conflicts. The top half of all conflict clauses are considered as
”good” clauses. With these labeled conflict clauses, the Naive
Bayes classifier creates a Naive Bayes Model. From this point
the classifier can be used.

This parallel SAT solver executes formulas with the com-
petitive approach. So, multiple instances of a sequential SAT
solver are executed with different initial parameters. Each
instance is working on the whole formula [1].
The parameters for different search strategies will be generated
randomly within a specific range. Due to the different strate-
gies, each instance of the parallel SAT solver is searching in

different areas of the search space and will generate different
conflict clauses.

The basis for evaluating conflict clauses are the features.
There are only values between 0 and 1 possible. The men-
tioned features are characteristics of a clause and they are
discussed in the following.

Horn: Determines, whether the clause has at most one
positive literal. Horn formulas can be solved in polynomial
time and therefore it is beneficial to add horn clauses.
PosLits: Determines, whether a clause has positive literals.
NegLits: Determines, whether a clause has negative literals.
Size: The size of the clause. Small clauses are preferred,
because they can be used more often during Unit Propagation.
The best size of a clause is a unit clause, because we know,
that this literal has to be true and other clauses which contain
the unit clause can be simplified.
Distance: Determines the distance between literals indices. It
is the distance between the indices of the variables in one
clause. In practical encodings, variables have similar indices
when they are closely related [4].
LBD: The literal block distance of a clause. Variables have
a decision level and the LBD is the amount of different
levels in a clause. All literals of the same level are blocks
and are connected with immediate dependencies. When the
solver stays in the same search space, such a clause helps to
reduce the amount of decisions in the residual search. Unit
Propagation of conflict clauses are based up to 40% of small
LBD-values [5].
VRV: The variable rate value. It measures how often a variable
gets a new assignment. Often selected variables have a higher
activity and they seem to be important. Another reason for
this metric is the fact that variables, assigned by the branching
heuristic, should appear in more clauses, so that they even can
be sometimes assigned by Unit Propagation. For this feature
higher values are better than lower values.

The Naive Bayes classifier is used to assign probabilities to
classes given an input object described by its features. Learn-
ing the classifier is simplified by assuming that features are
independent given class. The Naive Bayes Classifier calculates
the probability of the class ”good” for all features, that is

P (C1 | f1, .., f7) =

7∏
i=1

P (fi | C1) · P (C1)

7∏
i=1

P (fi)

,

where f1, ..., f7 is a feature vector and C1 is the ”good”
class. The Bayes’ Theorem allows to compute the probability
of class C1 given f1, ..., f7 [3]. The value below the fraction
bar can be ignored, because it is a constant and scales both

15

posteriors equally. It has no effect to the classification. The
other two values were learned by relative frequency. The
probability P (fi|C1) is modeled as a Gaussian distribution.
The sum of the two resulting probabilities is 1. So, a clause
could have the result of 0.4 for a ”good” clause and 0.6 for a
”bad” clause.

The features can be used to determine the likelihood of
the conflict clause being a ”good” conflict clause. The Naive
Bayes classifier will return a likelihood and all clauses above
a certain likelihood threshold are then passed to the other
solvers. These clauses are ”good” conflict clauses. It is impor-
tant to choose a good threshold for a ”good” conflict clause.
If the likelihood is too high, only few clauses will be shared
among the instances. In contrast to a too low threshold - there
are too many conflict clauses and the search procedure will
slowed down. Clauses which are classified as ”bad”, will not
be forwarded, but the solver, which finds the clause still keeps
them. The other instances will not interrupt their work if a
thread shares a new conflict clause. They will request the
”good” conflict clauses during backtracking. In consideration
of the new conflict clauses, the instances try a new assignment.

The parallel SAT solver based on the existing SAT solver
”MiniSat” and is written in C++. For the Naive Bayes Clas-
sifier the C++ machine learning library ”mlpack” is used [6].

Ideally, there should be a correlation between the features
and classes. The trained Naive Bayes model should show the
same results as the statements in the literature. For example, a
small conflict clause should ideally be classified as a ”good”
conflict clause. The features are dealing with continuous data,
so the continuous values associated with each class are dis-
tributed according to a Gaussian distribution. So, the variance
and the mean for each feature can be calculated. The Gaussian
curve can be evaluated for the ”good” conflict clauses and
the ”bad” conflict clauses for each feature. Unfortunately, the
results do not match the findings of other researchers. For
a small conflict clause there is a higher probability to be
sorted into the ”bad” class. The reason for this problem is
probably the initial assignment of conflict clauses to ”good”
conflict clauses or ”bad” ones based on the activity. So, another
measurement is necessary here.

Nevertheless the first evaluation results are promising with
the proposed approach scaling well and even outperforming
the established ManySAT solver in many cases. Other bench-
marks however resulted in high running times. This poses
several open research questions:

• Which characteristics of the benchmarks influence the
solvers running time? Is it possible to develop a perfectly
trained Naive Bayes Classifier for not only a specific class
of problems, but also multiple kinds of problems?

• How much overhead does the classifier generate? The
classification of the conflict clauses should not take
considerably more time in comparison to the rating of
conflict clauses due to a specific algorithm or a heuristic.

• What is the best way to train the Naive Bayes classifier?
Do we need all of the features and how can we rate them?

• Is there another good measure for the quality of a clause?
There might be heuristics that describe a clauses influence
on solving time better.

• How can we improve the approach?
• How can we evaluate features individually? Is it important

to know positive or negative literals of a clause?
• How can we find specific problem classes, which this

approach performs well on?

REFERENCES

[1] S. Hölldobler and N. Manthey and Van Hau Nguyen and J. Stecklina
and P. Steinke, “A short overview on modern parallel SAT-solvers,” In-
ternational Conference on Advanced Computer Science and Information
Systems, 2011.

[2] N. Manthey, ’Parallel SAT Solving - Using More Cores’, 2011.
[3] Velev, Miroslav N., “Automatic Abstraction of Equations in a Logic

of Equality,” International Conference on Automated Reasoning with
Analytic Tableaux and Related Methods, 2003.

[4] B., Magnus, “Successful SAT encoding techniques,” Journal on Satisfi-
ability, Boolean Modeling and Computation, 2009.

[5] G. Audemard and L. Simon, “Predicting Learnt Clauses Quality in
Modern SAT Solvers*,” Twenty-First International Joint Conference on
Artificial Intelligence, 2009.

[6] R. Curtin and et al., ’mlpack’, 2007, [Online], Available:
http://www.mlpack.org/doc/mlpack-3.1.1/cli documentation.html#nbc,
[Accessed: 03.07.2019].

16

Computer-supported Exploration of a Categorical

Axiomatization of Miroslav Benda’s Modeloids

Lucca Tiemens Dana S. Scott Miroslav Benda
Christoph Benzmüller

August 5, 2019

Extended Abstract

A modeloid, formulated by Miroslav Benda[1], is an equivalence relation on
the set of all words, which are sequences of non-repeating elements from
a finite set, enriched with three additional axioms. The first axiom states
that only words of the same length can be in the same equivalence class.
The second says that if two words are equivalent, so are their sub-words of
same length and the final one requires that, given two equivalent words, the
permuted words stay in relation as long as they were permuted in the same
way. Furthermore, a modeloid features an operation called the derivative
which is inspired by Ehrenfeucht-Fräıssé games1[4][3].

It is shown that this formulation can be generalized to category theory.
This is achieved by taking advantage of the fact that a modeloid can be
represented as a set of partial bijections where two words in relation become
domain and image of such a partial bijection. A generalization of this set
can be axiomatized as a subset of an inverse semigroup with the help of the
natural partial order because the nature of being a sub-word in the setting of
partial bijections can be captured by it. The Wagner-Preston representation
theorem [5] assures that this generalization is faithful.

The connection to category theory is made by the natural transition from
an inverse semigroup to an inverse category[7]. Since the natural partial or-
der can be reformulated, this allows a categorical description of a modeloid.
Here the derivative is shown to be capable of producing an Ehrenfeucht-
Fräıssé game on the category of a finite vocabulary.

1See for example [6] for more information on Ehrenfeucht-Fräıssé games.

1

17

During the whole process computer-based theorem proving is employed.
An inverse semigroup and an inverse category are being implemented in
Isabelle/HOL2. Almost all proofs of inverse semigroup theory needed for
the Wagner-Preston representation theorem could be found by automated
theorem proving, though sometimes needing more lemmas then the amount
that would be found in a textbook (e.g. in [5]). During the research on
how to formulate a modeloid in category theory (and here it should be
noted that a rigorous axiomatization of a category was used [2]) interactive
theorem proving has helped to find the correct formulations in this setting.

References

[1] Miroslav Benda. “Modeloids. I”. In: Transactions of the American Math-
ematical Society 250 (1979), pp. 47–90. doi: 10.1090/s0002-9947-
1979-0530044-4.

[2] Christoph Benzmüller and Dana S. Scott. “Automating Free Logic in
HOL, with an Experimental Application in Category Theory”. In: Jour-
nal of Automated Reasoning (2019). Url (preprint): http://doi.org/
10.13140/RG.2.2.11432.83202. doi: 10.1007/s10817-018-09507-7.

[3] Andrzej Ehrenfeucht. “An application of games to the completeness
problem for formalized theories”. In: Fundamenta Mathematicae 49.129-
141 (1961), p. 13.

[4] Roland Fräıssé. “Sur quelques classifications des systèmes de relations”.
PhD thesis. University of Paris, 1953.

[5] Mark V Lawson. Inverse Semigroups. WORLD SCIENTIFIC, Nov.
1998. doi: 10.1142/3645.

[6] Leonid Libkin. Elements of finite model theory. Springer Science & Busi-
ness Media, 2013.

[7] Markus Linckelmann. “On inverse categories and transfer in cohomol-
ogy”. In: Proceedings of the Edinburgh Mathematical Society 56.1 (Dec.
2012), pp. 187–210. doi: 10.1017/s0013091512000211. url: https:
//doi.org/10.1017/s0013091512000211.

2Isabelle/HOL is a higher-order logic theorem proving environment. More information
can be found at https://isabelle.in.tum.de/index.html

2

18

A Generic Scheduler for Large Theories presented in
Batches (LTB)

Marco Träger, marco.traeger@gmail.com, Freie Universität Berlin

Reasoning applications often rely on queries with a common large set of axioms such as Suggested
Upper Merged Ontology (SUMO) or Mizar Problems for Theorem Proving (MPTP) [UV13, PSST10].
To benchmark ATP systems on such problems the Large Theories presented in Batches (LTB) division of
the CADE ATP System Competition (CASC) was created in 2008 [Sut09]. Over the years the developer of
ATP systems have tested various approches to tackle TLB’s. For instance: iProver using an abstraction-
refinement framework [HK17] and Vampire axiom selection [KV13]. In LTB one overall time for all
problems are given and the axioms are often common to the set of conjectures. Hence, one may use the
results of one prove-attempt to fine tune the timeout or axiome selection for the prove-attempt of the next
problem.

A Generic Scheduler for LTB I will present a ATP-agnostic Python implementation for parsing and
executing LTB definitions using a modifiable scheduler approch. The implementation is not an ATP in
itself, instead it is using other ATPs such as Leo III for HOL [SB18] (allowing to use specialized ATPs
and a decoubling from the prove itself). The user only needs to implement a problem scheduler by
implementing several callbacks which are called whenever an ATP is terminating or runs into a timeout.
The user needs to provide:

• how may ATPs should be run in parallel

• which problem(s) the scheduler should start next and the time available for the attempt, proving
which problem was started and ended to this time

• which ATP and ATP-specific parameter the scheduler schould use for each prove attempt

Additionally, the implementation is

• designed using efficent multithreading to be able to use as many CPU time/processors as possible

• able to kill a APT processes if the result is not longer needed

• effiently synchronized s.t. the user only implements in the main thread allowing simple code but
fast execution under the hood

• generating profiling data and plots of the scheduler run 1

• extensible by design, to allow later additions of axiom selections or other methods

Figure 1: Automatically generated scheduler time-profile-plot using 4 problems with 3 variants (HOL).
A box represents a timeinterval of state of a problem during the run of the scheduler.

This removes the boilerplate to implement LTB strategies and allows the implementation, testing and
benchmarking of different LTB strategies on a generalized foundation.

Results A first implemention is hosted on github1. We will use this implementation at the next CASC
at CADE-27 (Aug 25th-30th), first results of the competition should be available at Deduktionstreffen
2019.

1https://github.com/leoprover/ltb

1

19

References
[HK17] Julio Cesar Lopez Hernandez and Konstantin Korovin. Towards an abstraction-refinement

framework for reasoning with large theories. IWIL@ LPAR, 1, 2017.

[KV13] Laura Kovács and Andrei Voronkov. First-order theorem proving and vampire. In Interna-
tional Conference on Computer Aided Verification, pages 1–35. Springer, 2013.

[PSST10] Adam Pease, Geoff Sutcliffe, Nick Siegel, and Steven Trac. Large theory reasoning with sumo
at casc. Ai Communications, 23(2-3):137–144, 2010.

[SB18] Alexander Steen and Christoph Benzmüller. The higher-order prover leo-iii. In Didier
Galmiche, Stephan Schulz, and Roberto Sebastiani, editors, Automated Reasoning - 9th In-
ternational Joint Conference, IJCAR 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, volume 10900 of Lecture Notes in
Computer Science, pages 108–116. Springer, 2018.

[Sut09] Geoff Sutcliffe. The 4th ijcar automated theorem proving system competition–casc-j4. Ai
Communications, 22(1):59–72, 2009.

[UV13] Josef Urban and Jiří Vyskočil. Theorem proving in large formal mathematics as an emerging
ai field. In Automated Reasoning and Mathematics, pages 240–257. Springer, 2013.

2

20

Computer-Assisted Reasoning about Norms and Obligations

Gavin Goerke

The American University of Paris

1 Introduction

NormativeAI is an open source web application with the purpose of providing an intuitive user interface
for both the process of translating a natural language text into formal language and the process of writing
queries over the user defined formalizations. NAI is freely available at the URL https://nai.uni.lu and the
source code is found at the URL https://github.com/normativeai. The tool is currently being developed
to provide the benefits of automated reasoning systems to domains which depend on normative reasoning,
particularly the field of law. Such benefits include the added precision that formal logic provides to reasoning
as well as the automation of deductions from premises. NAI is being developed to have a practical use case
and high-quality user experience and therefore uses the software as a service model wherein no installation
of any application is necessary and the tool is easily accessible on a number of devices.

To start using NAI the user logs into the website and pastes the text they wish to formalize into the
legislation editor, at this point they can start highlighting text to define terms and relate them using logical
connectives. Once this process is completed the user can take advantage of the back-end theorem prover
and begin to write queries. The queries allow the user to check the logical consequences, consistency, and
independence of the formalization and through this the consequences, consistency, and independence of their
particular interpretation of the text. It is worth pausing here to note that the nature any natural language
entails a certain amount of ambiguity and so the proofs resulting from the theorem prover are always in the
context of the users formalization of their particular interpretation of the text. We can view this as a sort
of threefold distinction between formalization, interpretation and the text itself where the user provides the
relations between.

We believe that the benefit of NAI is not limited to the results of the queries but that the process of
formalization itself provides additional value. In his paper [1], Allen shows how the use of symbolic logic in
the process of legal drafting can reduce ambiguity. Similarly, the process of formalizing existing legal texts
forces the user notice points of ambiguity and hence the user may be more conscious of the gap between
possible interpretations and their own.

2 Logic

The Stanford Encyclopedia of Philosophy describes deontic logic as the branch of symbolic logic that has been
most concerned with the contribution of the notions of the permissible, impermissible, obligatory, omissible
and ought [3]. This type of logic then is especially well suited for our purposes of automated reasoning over
normative concepts. The current iteration of the tool uses an extension of the deontic logic SDL (Standard
Deontic Logic) called DL*. While SDL can be encoded in theorem provers without great di�culty it also
su↵ers from a lack of expressivity and an inability to capture common scenarios that appear in legal text
such as so-called contrary-to-duty scenarios in which a secondary obligation is only brought into e↵ect if a
primary obligation is violated [5]. As shown in [2] extensions such as DL* overcome several of these problems
while still being able to be easily encoded in automated theorem provers.

1

21

3 Limitations and Planned Features

Currently NAI is in an early stage of development however it’s core functionality, that is the user interface
for the formalization process, the ability to write queries, and the back-end automated theorem prover, are
fully functional. In this section we describe some of the limitations as well as possible solutions along with
some features with planned implementation in the future.

One limitation is the ability of the current logic to represent defeasible reasoning or reasoning in which
the inferences become retractable when some new information is added. Because the current underlying
logic is monotonic we do not have the capability to capture this concept and it has been argued (as in [4])
that defeasibility plays an important rule in legal reasoning. A solution to this which is being currently
investigated is the implementation of defeasibile reasoning at the application level rather than the logical
level, other solutions include using non-monotonic logics as a replacement for or in conjunction with the
current logic.

A feature currently being considered is the ability for users to make their annotated texts public. NAI
could then build a searchable database of users shared texts with the goal of facilitating discussion and
experimentation with formalizations, this public use and discussion would in turn provide valuable feedback
to inform the further development of the tool.

4 Using NAI

In this section we give a brief example of annotating a text in NAI. We first login at the home page and
are then brought to the dashboard. Under the ”Legislations” heading we click “Create new” and are then
brought to the “Legislation editor.” Here we paste the text we wish to annotate. Once annotated (top left)
we can then see the resulting formalization (top right). The bottom image shows the result of a query asking
whether a man who let in water to the plantation but the water did not overflow into the plantation of his
neighbor, is obliged to pay.

References

[1] Layman E Allen. 1956. Symbolic logic: A razor-edged tool for drafting and interpreting legal documents..
Yale LJ 66 (1956), 833.

[2] Tomer Libal and Matteo Pascucci. 2018. Automated Reasoning in Normative Detachment Structures with
Ideal Conditions. CoRR abs/1810.09993. arXiv:1810.09993

[3] McNamara, Paul. Deontic Logic The Stanford Encyclopedia of Philosophy
https://plato.stanford.edu/archives/sum2019/entries/logic-deontic

[4] Sartor, Giovanni. 2009. Defeasibility in Legal Reasoning. The Logic of Legal Requirements: Essays on
Defeasibility.

[5] Prakken, H. and Sergot, M. 1996. Contrary-to-duty obligations. Studia Logica 57, 91–115

[6] Tomer Libal and Alexander Steen. 2019. NAI - The Normative Reasoner.

2

22

Experiments in Deontic Logics using Isabelle/HOL

Ali Farjami

University of Luxembourg, Luxembourg
ali.farjami@uni.lu

Deontic logic is a reasoning framework about normative concepts such as obligation, per-
mission, and prohibition. On one hand, we have the family of traditional deontic logics which
includes Standard Deontic Logic (SDL),a modal logic of type KD, and Dyadic Deontic Logic
(DDL) [5, 6]. On the other hand, we have the so called norm-based deontic logics. Here the
frameworks do not evaluate the deontic operators with regard to a set of possible worlds but
with reference to a set of norms. Such a framework investigates which norms apply for a given
input set, referred to as facts, and a set of explicitly given conditional norms, referred to as nor-
mative system. A particular framework that falls within this category, is called Input/Output
(I/O) logic. It gained high recognition in the AI community and is also addressed as a chapter
in the handbook of deontic logic [6]. The framework is expressive enough for dealing with legal
concepts such as constitutive, prescriptive and defensible rules [4].

Current research at the University of Luxembourg focuses on shallow semantical embeddings
of a family of deontic logics in classical higher-order logic (HOL) [2, 3, 1]. The embeddings have
been encoded in Isabelle/HOL, which turns this system into a proof assistant for deontic logic
reasoning. The experiments with this environment provide evidence that the shallow semantical
embedding methodology fruitfully enables interactive and automated deontic reasoning at the
meta-level and the object-level in Isabelle/HOL.

We will present ongoing work on the study of these embeddings and their applications for
legal and ethical computerized applications.

References

[1] Christoph Benzmüller, Ali Farjami, Paul Meder, and Xavier Parent. I/O logic in HOL. Journal
of Applied Logics – IfCoLoG Journal of Logics and their Applications, 2019. To appear, preprint:
https://www.researchgate.net/publication/332786587_IO_Logic_in_HOL.

[2] Christoph Benzmüller, Ali Farjami, and Xavier Parent. A dyadic deontic logic in HOL. In Jan
Broersen, Cleo Condoravdi, Shyam Nair, and Gabriella Pigozzi, editors, Deontic Logic and Norma-
tive Systems — 14th International Conference, DEON 2018, Utrecht, The Netherlands, 3-6 July,
2018, volume 9706, pages 33–50. College Publications, 2018. John-Jules Meyer Best Paper Award,
Preprint: https://tinyurl.com/y9wp4p6s.

[3] Christoph Benzmüller, Ali Farjami, and Xavier Parent. Åqvist’s dyadic deontic logic E in HOL.
Journal of Applied Logics – IfCoLoG Journal of Logics and their Applications, 2019. To appear,
preprint: https://www.researchgate.net/publication/332786724_Aqvist’s_Dyadic_Deontic_

Logic_E_in_HOL.

[4] Guido Boella and Leendert W. N. van der Torre. Regulative and constitutive norms in normative
multiagent systems. In KR, pages 255–266. AAAI Press, 2004.

[5] Dov Gabbay, Jeff Horty, Xavier Parent, Ron van der Meyden, and Leon van der Torre. Handbook
of deontic logic and normative systems, Volume I. College Publication, UK, 2013.

[6] Dov Gabbay, Jeff Horty, Xavier Parent, Ron van der Meyden, and Leon van der Torre. Handbook
of deontic logic and normative systems, Volume II. College Publication, UK, 2013.

23

Author Index

Ali Farjami, 23

Christoph Benzmüller, 13

David Fuenmayor, 13

Gavin Goerke, 21

Jürgen Giesel, 1
Jill Tietjen, 15

Lucca Tiemens, 17

Marcel Hark, 1
Marco Träger, 19
Marko Kleine Büning, 6
Markus Iser, 11

Peter Giesel, 1

Safa Omir, 9

